Stat 134: Section 11 Adam Lucas March 4th, 2019

Conceptual Review

- a. Suppose *X*, *Y* are independent Poisson RVs with means μ , λ respectively. What is the distribution of *X* + *Y*?
- b. What are the assumptions needed for a Poisson Process/Scatter?

Problem 1

Suppose *X*, *Y*, and *Z* are independent Poisson random variables, with parameters μ_X , μ_Y , μ_Z respectively. Find:

- a. P(X + Y = 4)
- b. $\mathbb{E}((X + Y + Z)^2)$

From Ex 3.5.11 in Pitman's Probability

Hint: Recall the equation $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$.

Problem 2: Poisson Thinning

Cars arrive at a toll booth according to a Poisson process with rate μ per minute. Suppose each car has a chance p of being an import, and chance q = 1 - p of being domestic, independently of all other cars. Let X_t , Y_t be the number of imports and domestics, respectively, arriving in t minutes. Show that X_t and Y_t are independent Poisson processes. Hint: Start with

 $P(X = x, Y = y) = P(X + Y = x + y)P(X = x \mid X + Y = x + y)$

Problem 3: Properties of the Geometric Distribution

Let $X_1, X_2 \stackrel{\text{i.i.d.}}{\sim} \text{Geom}(p)$ on $\{0, 1, 2, ...\}$.

- a. *Memoryless property:* Show that for all $k, m \ge 0$, $P(X_1 = m + k \mid X_1 \ge k) = P(X_1 = m)$. Provide an explanation for why this must be the case, in terms of sequences of successes and failures.
- b. *Sums of geometrics:* Let $Y = X_1 + X_2$. What is the distribution of *Y*? Find $P(X_1 = k | Y = n)$, for $0 \le k \le n$. (What distribution does this remind you of?)

Prepared by Brian Thorsen and Yiming Shi