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Conceptual Review

What are the different functions we have used to characterize (i.e.,
fully describe) distributions of random variables? We have seen four.

Problem 1

Suppose we have a random variable X with continuous and strictly
increasing CDF FX . Find the distribution of FX(X).
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Problem 2: Geometric from Exponential

Show that if T ∼ Exp (λ), then Z = int(T) = bTc, the greatest
integer less than or equal to T, has a geometric (p) distribution on
{0, 1, 2, . . .}. Find p in terms of λ.

How can we use the CDF of Z to
simplify this problem?

Ex 4.2.10 in Pitman’s Probability

Problem 3

Let U(1), . . . , U(n) be the values of n i.i.d. Uniform (0,1) variables
arranged in increasing order. For 0 < x < y < 1, find simple
formulae for:

a. P(U(1) > x, U(n) < y)

b. P(U(1) > x, U(n) > y)

c. P(U(1) < x, U(n) < y)

d. P(U(1) < x, U(n) > y)

Ex 4.6.3 in Pitman’s Probability

Prepared by Brian Thorsen and Yiming Shi


	Conceptual Review
	Problem 1
	Problem 2: Geometric from Exponential
	Problem 3

