Stat 134: Section 15 Adam Lucas April 1st, 2019

Conceptual Review

What are the different functions we have used to characterize (i.e., fully describe) distributions of random variables? We have seen four.

Problem 1

Suppose we have a random variable X with continuous and strictly increasing CDF F_X . Find the distribution of $F_X(X)$.

Show that if $T \sim \text{Exp }(\lambda)$, then $Z = \text{int}(T) = \lfloor T \rfloor$, the greatest integer less than or equal to T, has a geometric (p) distribution on $\{0,1,2,\ldots\}$. Find p in terms of λ . *Ex* 4.2.10 in Pitman's Probability

How can we use the CDF of *Z* to simplify this problem?

Problem 3

Let $U_{(1)}, \ldots, U_{(n)}$ be the values of n i.i.d. Uniform (0,1) variables arranged in increasing order. For 0 < x < y < 1, find simple formulae for:

a.
$$P(U_{(1)} > x, U_{(n)} < y)$$

b.
$$P(U_{(1)} > x, U_{(n)} > y)$$

c.
$$P(U_{(1)} < x, U_{(n)} < y)$$

d.
$$P(U_{(1)} < x, U_{(n)} > y)$$

Ex 4.6.3 in Pitman's Probability