Stat 134: Section 11 Adam Lucas March 9th, 2023

Conceptual Review

Consider a Poisson Process with rate λ per unit time. Identify what each random variable represents, and find the distributions of:

a. *N*_{*t*};

b. *W*_{*k*};

c. T_k . (How is this different from (b)?)

Problem 1

Suppose calls are arriving at a telephone exchange at an average rate of one per second, according to a Poisson arrival process. Find:

- a. the probability that the fourth call after time t = 0 arrives within 2 seconds of the third call;
- b. the probability that the fourth call arrives by time t = 5 seconds;
- c. the expected time at which the fourth call arrives.

Ex 4.2.5 in Pitman's Probability

Problem 2: Gammas, Exponentials, and Moments

Consider the gamma function $\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx$, r > 0.

- a. Use integration by parts to show that $\Gamma(r+1) = r\Gamma(r)$.
- b. Deduce from (a) that for any positive integer n, $\Gamma(n) = (n 1)!$
- c. Show that if *T* Exp (1), then $\mathbb{E}(T^n) = n!$.
- d. Show that if $S = T/\lambda$, then $S \text{ Exp } (\lambda)$. (Note: from this, we can easily show that $\mathbb{E}(S^n) = n!/\lambda^n$).

Ex 4.2.9 *in Pitman's Probability*

Hint: Consider the expression P(S > s), then substitute for *S* appropriately.

Problem 3

Shocks occur to a system according to a Poisson process of rate λ . Suppose that the system survives each shock with probability α , independently of other shocks, so that its probability of surviving *k* shocks is α^k . What is the probability that the system is surviving at time *t*?

Prepared by Brian Thorsen and Yiming Shi