Stat 134: Poisson Process Review Hank Ibser December 6th, 2017

Some Things to Remember

Given a Poisson Process with rate λ :

- a. P(arrival in interval δt) =
- b. The distribution of the waiting time between any 2 consecutive arrivals is:
- c. The distribution of T_r , the waiting time until the *r*th arrival is:
- d. Are the following independent?
 - 1. The events of arrivals in disjoint intervals
 - 2. The distributions of the waiting times between arrivals

Problem 1

Consider two independent Poisson processes with rates λ_1 and λ_2 . Those processes measure the number of customers arriving in store 1 and 2.

- a. What is the probability that a customer arrives in store 1 before any arrives in store 2?
- b. What is the probability that in the first hour exactly 6 customers arrive at the two stores? (The total for both is 6.)
- c. Given exactly 6 have arrived at the two stores, what is the probability all 6 went to store 1?

EECS126, Discussion 6, Q2

Problem 2

Bus lines A, B and C service a particular stop. Suppose the lines come as independent Poisson processes with rates λ_A , λ_B , and λ_C per hour respectively. Find expressions for the following probabilities.

- a. Exactly one A bus, two B buses, and one C bus come to the stop in a given hour.
- b. A total of 7 buses come to the stop in a given two hour time period.
- c. Starting from a fixed time, the first A bus arrives after *t* hours.

Ex 4.rev.18 in Pitman's Probability

Problem 3

Suppose calls are arriving at a telephone exchange at an average rate of one per second, according to a Poisson arrival process. Find:

- a. the probability that the fourth call after time t = 0 arrives within 2 seconds of the third call.
- b. the probability that the fourth call arrives by time t = 5 seconds.
- c. the expected time at which the fourth call arrives.

Ex 4.2.5 in Pitman's Probability