Stat 134: *Review Section Worksheet: Densities* + *CDF* + *Order Statistics*

Hank Ibser

December 6th, 2017

Density Practice

Suppose we have a poisson process with rate λ , i.e. $P(arrival \in dt) \approx \lambda dt$

- a. What is the distribution of T_r , the time of the r th arrival, show you work. Derive directly from $P(T_r \in dt)$ using N_t .
- b. As r gets very large what is the density of $(T_r E(T_r))/SD(T_r)$? Hint: treat T_r as the appropriate sum of r.v.s.

Minimum of Exponentials

We will show that the minimum of exponentials is exponetially distributed, using multiple approaches. Let, $Z = \min(X, Y)$, where $X, Y \sim exp(\lambda)$ is exponential.

- a. Show straight from the CDF, $F_Z(z)$.
- b. Show directly from $P(Z \in dz)$
- c. Generalize to set of n, what is the distribution of $min(X_1, X_2, \dots, X_n)$?

CDF Practice

Let $T \sim exp(\lambda)$, $Y = \sqrt{T}$

- a. Find the density of Y, using the CDF of Y.
- b. Calculate the Expectation of Y.

Modified Ex 4.5.7 in Pitman's Probability

Order Statistic Practice

Assume N points are picked independently and uniformly at random from unit circle. Let R_1, \dots, R_N denote the random radius of n points sampled in this way. Assume $N \ge 7$.

- a. Find the density and CDF or *R*.
- b. Find the density of $R_{(k)}$ for $1 \le k \le N$
- c. Find the joint density of $R_{(3)}$, $R_{(7)}$

Modified from Quiz 4