Stat 134: Section 21

Hank Ibser

November 29th, 2017

Problem 1

Here is a summary of Pre-SAT and SAT scores of a large group of students.

PSAT scores:	average: 1200	SD: 100
SAT scores:	average: 1300	SD: 90
correlation: 0.6		

Assume the data are approximately bivariate normal in distribution.

- a. Of the students who scored 1000 on the PSAT, about what percentage scored above average on the SAT?
- b. Of the students who scored below average on the PSAT, about what percentage scored above average on the SAT?
- c. About what percentage of students got at least 50 points more on the SAT than on the PSAT?

Ex 6.5.1 in Pitman's Probability

Problem 2

Let *X* and *Y* be independent standard normal variables.

- a. For a constant k, find $\mathbb{P}(X > kY)$.
- b. If $U = \sqrt{3}X + Y$, and $V = X \sqrt{3}Y$, find P(U > kV).
- c. Find $\mathbb{P}(U^2 + V^2 < 1)$.
- d. Find the conditional distribution of X given V = v.

Ex 6.5.6 in Pitman's Probability

Heights and weights of a large group of people follow a bivariate normal distribution, with correlation 0.75. Of the people in the 90th percentile of weights, about what percentage are above the 90th percentile of heights? *Ex* 6.5.3 *in Pitman's Probability*

Problem 4

Let X and Y have bivariate normal distribution with parameters μ_X , μ_Y , σ_X^2 , σ_Y^2 , and ρ . Let $P(X > \mu_X, Y > \mu_Y) = q$. Find:

- a. a formula for q in terms of ρ ;
- b. a formula for ρ in terms of q.

Ex 6.5.5 in Pitman's Probability