Stat 134: Section 22 Hank Ibser December 4th, 2017

Problem 1

Let X_1 be uniform (0, 1) independent of X_2 , that is, uniform (0, 2). Find:

- a. $P(X_1 + X_2 \le 2)$
- b. the density of $X_1 + X_2$
- c. the cdf of $X_1 + X_2$
- *Ex* 5.4.1 *in Pitman's Probability*

Problem 2

A computer job must pass through two queues before it is processed. Suppose the waiting time in the first queue is exponential with rate α , and the waiting time in he second queue is exponential with rate β , independent of the first.

- a. Find the density of the total time the job spends waiting in the two queues.
- b. Find the expected total waiting time in terms of α and β .
- c. Find the SD of the total waiting time in terms of α and β .

Ex 5.4.3 in Pitman's Probability

Problem 3

Find the density of Y = U/V for independent uniform (0,1) variables Hint: Use the CDF. U and V. *Ex* 5.4.10 *in Pitman's Probability*

Problem 4

Find the density of Z = X - Y for independent exponential (λ) variables X and Y. Ex 5.4.13 in Pitman's Probability

Prepared by Malayandi Palaniappan (Andy) and Dibya Ghosh