Stat 134: Joint Distributions Review - Solutions

Adam Lucas

December 5th, 2018

Conceptual Review

Suppose X, Y are random variables with joint distribution $f_{X,Y}$ over the region $\{(x, y) \in \mathbb{R}^2 : 0 < x < y\}$.

No, because P(Y<1)>0, but P(Y<1|x,1)=0. a. Are *X*, *Y* independent?

b. Set up an integral to find each of the following:

i.
$$f_X(x)$$
;

(i)
$$f_{x}(x) = \int_{x}^{\infty} f_{x,y}(x,y) dy$$

ii.
$$F_Y(y)$$

iii.
$$P(Y < X + 5)$$
;

$$\int_{0}^{\infty} \int_{0}^{\infty} f_{x,y}(x,z) dxdz$$
dummy variable

Are
$$X,Y$$
 independent? NO, because $I(Y<1)>0$, but $I(Y<|X>1)=0$
Set up an integral to find each of the following:
i. $f_X(x)$; i) $f_X(x) = \int_X f_{X,Y}(x,y) dy$ iv) $\int_0^\infty x f_X(x,y) dy dx$ OR
ii. $F_Y(y)$;
iii. $P(Y < X + 5)$; ii) $F_Y(y) = \int_0^\infty f_{X,Y}(x,z) dx dz$
iv. $E(X)$;
v. $E(g(X,Y))$.

iii)
$$\int_{0}^{\infty} f(x,y)dydx$$

Problem 1

Based on each of the joint densities below, with minimal calculation, identify the marginal distribution of *X* and *Y*.

- a. $f_{X,Y}(x,y) = 3360x^3(y-x)^2(1-y)$, 0 < x < y < 1 (Bonus: how did we compute the constant of 3360?);
- b. $f_{XY}(x,y) = \lambda^3 e^{-\lambda y} (y-x), \ 0 < x < y;$
- c. $f_{X,Y}(x,y) = e^{-4y}$, 0 < x < 4, 0 < y.

b) Rewriting as
$$\lambda e^{-\lambda x} \cdot \left(e^{-\lambda(y-x)} \cdot \frac{\lambda(y-x)}{\lambda}\right) \cdot \lambda$$
 $\lambda \sim Exp(\lambda), \gamma \sim Gamma(3, \lambda)$

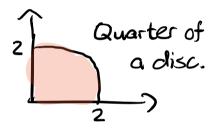
Using Poisson Arrival Process.

$$X \sim Exp(\lambda), Y \sim Gamma(3, \lambda)$$
using Poisson Arrival Process.

c) x~ Unif (0,4), Y~ Exp(4). fx,y(x,y)=

Problem 3

Let (X, Y) represent a point chosen uniformly at random from the region $\{(x,y): x > 0, y > 0, x^2 + y^2 < 4\}$. Let *R* represent the distance from the origin to the random point (X,Y), i.e. R = $\sqrt{X^2 + Y^2}$. Find:



a.
$$f_{X,Y}(x,y)$$
;

a) Area of region =
$$\frac{\pi(2)^2}{4} = \pi$$
.

b.
$$f_R(r)$$
;

$$\Rightarrow f_{x,Y}(x,y) = \frac{1}{\pi}$$
 for (x,y) in region.

c.
$$P(cX > Y)$$
, for some $c > 0$.

b) Use CDF.
$$F_R(r) = P(R < r) = \frac{\left(\frac{\pi r^2}{4}\right)}{\pi} = \frac{r^2}{4}$$

$$\Rightarrow f_R(r) = \frac{r}{2}, 0 < r < 2.$$

Reduces to finding 0.

$$= \arctan(\frac{x}{x})$$

$$= \arctan(c)$$

$$\mathbb{P}(cX > Y) = \frac{\arctan(c)}{(\pi/2)}$$

Prepared by Brian Thorsen