Stat 134: Joint Distributions Review - Solutions Adam Lucas

December 5th, 2018

Conceptual Review

Suppose *X*, *Y* are random variables with joint distribution $f_{X,Y}$ over the region $\{(x, y) \in \mathbb{R}^2 : 0 < x < y\}$.

a. Are X, Y independent? No, because
$$\mathbb{P}(Y < 1) > 0$$
, but $\mathbb{P}(Y < 1 | x > 1) = 0$.
b. Set up an integral to find each of the following:
i. $f_X(x)$; i) $f_X(x) = \int_X f_{x,y}(x,y) dy$
ii. $F_Y(y)$;
iii. $P(Y < X + 5)$; ii) $F_Y(y) = \int_X f_{x,y}(x,z) dx dz$
iv. $\mathbb{E}(X)$;
v. $\mathbb{E}(g(X,Y))$.
iii) $\int_X f_Y(y) = \int_X f_{x,y}(x,z) dx dz$
iv. $\mathbb{E}(g(X,Y))$.
iv) $\int_X f_X(x) dy dx$
iv) $\int_X f_X(x,y) dy dx$

Problem 1

Based on each of the joint densities below, with minimal calculation, identify the marginal distribution of *X* and *Y*.

a. $f_{X,Y}(x,y) = 3360x^3(y-x)^2(1-y), 0 < x < y < 1$ (Bonus: how did we compute the constant of 3360?);

b.
$$f_{X,Y}(x,y) = \lambda^3 e^{-\lambda y} (y-x), \ 0 < x < y;$$

c.
$$f_{X,Y}(x,y) = e^{-4y}, \ 0 < x < 4, \ 0 < y.$$

a)
$$\lambda_{x} = \lambda_{x} = \lambda$$

C)
$$\chi \sim Unif(0,4), Y \sim Exp(4). f_{X,Y}(X,y) = \frac{1}{4} \cdot 4 e^{-1/4}$$

Quarter of

a disc.

Problem 2

Suppose *X*, *Y* follow the standard bivariate normal distribution with correlation ρ . Find the joint density of *X* and *Y*. As a reminder, $\phi(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$ is the standard normal PDF. (Note we have worked a lot with these two variables, but we have not yet derived this density or used it directly!)

$$\mathbb{P}(X \in dx, Y \in dy) = \mathbb{P}(X \in dx, pX + JI - p^2 Z \in dy)$$

$$\chi = x_1 Y = y \Rightarrow \frac{y - px}{JI - p^2} = Z = p(x) p(\frac{y - px}{JI - p^2}).$$

Problem 3

Let (X, Y) represent a point chosen uniformly at random from the region $\{(x, y) : x > 0, y > 0, x^2 + y^2 < 4\}$. Let *R* represent the distance from the origin to the random point (X, Y), i.e. $R = \sqrt{X^2 + Y^2}$. Find:

- a. $f_{X,Y}(x,y)$;
- b. $f_R(r)$;
- c. P(cX > Y), for some c > 0.

andom point (X, Y), i.e. R =a) Area of region = $\frac{\pi(2)^2}{4} = \pi$. $\Rightarrow f_{X,Y}(x,y) = \frac{1}{\pi}$ for (x,y) in region.

2