Announcements For Monday's review write down questions in discussion board on b-course by Sunday 8pm.

$$\chi \sim Poi>(m)$$

 $P(\chi=k) = \underbrace{e^{-M}}_{K!}$
 $E(\chi) = Va.(\chi) = M.$

Poilson Proces or Poilson Randon Scatter (PRS); Er radboactive decay of Americium 241 in 10 seconds It there were a similar of the second similar of the

Descriptions D no two particles arrive at the same time, (this allows us to divide 10 sec into n small thre intervals each with at most one arrival. (2) X is a sum of n ind Bernoull (p) trials. Normall

$$M = MP$$
 is any # of any locals in 10 sec.
 $\lambda = M/10$ is the antival rate Por second,

Sec 3.5 Poisson thinning Care arrive at a toll booth according to

a Poisson process at a rate $\lambda = 3$ arrivals/

X = # cars awining at a toll booth in 10 min. X~ Pois (1.10)

1 X X X X X X I 0 Mm

Of cars arriving, it is known,

over the long term, that 60% are

Japanese imports, non Japanese 1 X X X X X X I 0 ID Min

Call Jevenere cers a saces out non Jepaner a failure,

cave $\sim \operatorname{Pois}(\lambda \cdot 10) = \operatorname{Pois}(30)$ # Jerenese imports $\wedge \operatorname{Pois}(P\lambda \cdot 10) = \operatorname{Pois}(18)$ # non Jerenese $\wedge \operatorname{Pois}(2\lambda \cdot 10) = \operatorname{Pois}(12)$

Et What is the Probability that in a
given 10 min interval, 15 cars arritre
at the booth and 10 are Japanese
importe?

$$X = \# avs in 10 min NPols (30)$$

 $X' = \# avs in 10 min NPols (30)$
 $N' = \# Japanese cars in 10 min
NPoils(18)
 $n = \# pron Japanese n Pols (12)$
 $P(X = 15, J = 10) = P/nJ = 5, J = 10)$
 $= P(nJ = 5)P(J = 10)$
 $= 12^{12} \cdot \frac{2^{12}}{15} \cdot \frac{15}{10}$$

2 Midterm verien

Which distributions are (approximately) a sum of a fixed number of independent Bernoulli tribals? Discrete

Norm 41	\$(x)	M	T ²
negative binomial (r, p) on $\{0, 1, 2, \ldots\}$	$\binom{k+r-1}{r-1}p^r(1-p)^k$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$
geometric (p) on $\{0, 1, 2\}$	$(1-p)^k p$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
geometric (p) on $\{1, 2, 3 \dots\}$	$(1-p)^{k-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$(N \in n)$ hypergeometric (n, N, G) on $\{0, \ldots, n\}$ $(N \in n)$	$\frac{\binom{G}{k}\binom{N-G}{n-k}}{\binom{N}{n}}$	$\frac{nG}{N}$	$n\left(\frac{G}{N}\right)\left(\frac{N-G}{N}\right)\left(\frac{N-n}{N-1}\right)$
Poisson (μ) on $\{0, 1, 2,\}$	$\frac{e^{-\mu}\mu^k}{k!}$	μ	μ
binomial (n, p) on $\{0, 1, \dots, n\}$	$\binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
Bernoulli (p) on $\{0, 1\}$	P(1) = p; P(0) = 1 - p	p	p(1-p)
on $\{a, a+1, \dots, b\}$	$\frac{1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$
name and range	$P(k) = P(X = k)$ for $k \in$ range	mean	variance

Demorganie rule:
$$(A \cap B)^{c} = A^{c} \cup B^{c}$$

 $\Rightarrow A \cap B = (A^{c} \cup B^{c})^{c}$
So $P(A \cap B) = 1 - P(A^{c} \cup B^{c})$

Inclusion exclusion formula:

Let A, A, A, Be dependent RVs with $P(A_{2}) = .9$ for i = 1, 2, 3. Flord a lower bound for P((A)) P(AP:)= I-P(UA:) by De Morgans $P(\overset{3}{\cup}A;^{c}) = P(A;^{c}) + P(A;^{c}) + P(A;^{c})$ $-P(A_1^cA_2^c)-P(A_2^cA_2^c)-P(A_1^cA_3^c)$ $+ P(A, A_2, A_2)$ $\Rightarrow P(\mathcal{Y}_{A_{1}}^{c}) \leq P(A_{1}^{c}) + P(A_{2}^{c}) + P(A_{3}^{c}) = 30$ $P(\tilde{n}P_{2}) \geq 1 - 3 = \overline{2}$

er conditional distribution, Poisson

8. Let X_1 and X_2 be independent random variables such that for i = 1, 2, the distribution of X_i is Poisson (μ_i) . Let m be a fixed positive integer. Find the distribution of X_1 given that $X_1 + X_2 = m$. Recognize this distribution as one of the famous ones, and provide its name and parameters.

$$X_{1} \wedge Polk(m_{1}) \\ X_{2} \wedge Polk(m_{2}) \} \text{ indep } P(x_{1}=k) = \underbrace{e_{M_{1}}}_{k!} \\ X_{1} | X_{1}+X_{2}=m \quad \text{taken value } O_{1} | Z_{1} \dots m \\ P(X_{1}=k | X_{1}+X_{2}=m) = \underbrace{P(X_{1}=K_{1} \times Z_{2}=m-k)}_{P(X_{1}+X_{2}=m)} \\ = \underbrace{P(X_{1}=k)P(X_{2}=m-k)}_{P(X_{1}+X_{2}=m)} \\ = \underbrace{e_{M_{1}}}_{K!} , \underbrace{e_{M_{2}}}_{(m-k)!} \\ \underbrace{e_{M_{1}}}_{K!} , \underbrace{e_{M_{2}}}_{(m-k)!} \\ \underbrace{e_{M_{1}}}_{M_{1}} , \underbrace{e_{M_{2}}}_{(m-k)!} \\ = \underbrace{e_{M_{1}}}_{K!} , \underbrace{e_{M_{2}}}_{(m-k)!} \\ \underbrace{e_{M_{1}}}_{M_{1}+M_{2}} \\ \underbrace{e_{M_{1}}}_{M_{1$$

Problem 4 (conditional probability)

Two jars each contains r red marbles and b blue marbles. A marble is chosen at random from the first jar and placed in the second jar. A marble is then randomly chosen from the second jar. Find the probability this marble is red.

.

$$X = 4e \quad \text{for each marble color}$$

$$Y = 4e \quad \text{for each marble color}$$

$$R = ned \qquad (+) \quad (-+) \quad (-+) \quad (+) \quad (+)$$

expectation question

An urn contains 90 marbles, of which there are 20 greens, 20 blacks and 50 red marbles. Tom draw marble without replacement until the 6^{th} green marble. Let X = # of marbles drawn. Example: **GGGBRBGGBRG** with x = 11. Find $\mathbb{E}[X]$.

Hint First find the expected number of marbles until the 1st green marble. what is the min and mat at X? 1,71 $X = T_1 + \dots + T_{70} + 1$ $P = \frac{1}{21}$ $\frac{1}{200} + \frac{1}{200} + \frac{1}{200}$ P= 1/21 State there are 21 stats the 2nd nongreen (un go, => E(x)= 70 · (1/2,)+)

To solve original proyens by symmetry you care of # nongress. markes between first and second groon also to be 70. (1/2)+1. Similar between 2" and 3° green etc

Hence answer is 6. [70(1/21)+1]