Stat 134 lec 15

warmop:

Lucy and two friends each have a P-coin
and tops it independently at the same time.
What is the probability that the first person
to get a head has to tas more than n times
(i.e. Find
$$P(min(X_1, X_2, X_3) > n))$$
)
 $P(min(x_1, x_2, X_3) > n))$
 $P(min(x_1, x_2, X_3) > n))$
 $P(min(x_1, x_2, X_3) > n)) = P(x_1, x_1, x_2, x_3) + min(x_1, x_2, x_3))$
 $= P(x_1, x_1)^2 = (q^2)^2 = q^2 = (q^3)^2 + min(x_1, x_2, x_3)^2$
 $independent.$
It follows that $ift P(x > n) = q^2$
 $min(x_1, x_2, x_3) - 600m(1-q^2)$

More about min at independent geometrics in the appandix.

Announcement: Well short review Filding.
review moterials are on statisticity

$$\frac{1arst + thene}{3ec 3.4}$$
 becometwic Distribution
 $X \sim 60000 (P)$ on $1.7...$
 $X = # + thels with the first success.
 $E(X) = \frac{1}{P}$
 $Vow(X) = \frac{9}{P^2}$
More generally:
Negative Einownial Distribution (NegBin (T, P))
generalization of Gam(A) T Well Gam(P)
 $Sum of$
 $ridder Gam(P)$
 $ridder Tr ~ Neg Bin (T, P)$
 $T_r = H inder P-trials until The success$
 $rid P$
 $rid R$
 $ridder Statistics on the success$$

$$P(T_{r}=k) = \binom{k-1}{r-1} P^{r-1} \frac{k-r}{2} P^{r} = \binom{k-1}{r-1} P^{r} \frac{k-r}{2}$$

$$T_{r}=w_{1}+\cdots+w_{r} \quad w_{r}=w_{1}, \cdots, w_{r} \stackrel{iid}{\sim} \text{Geom}(P)$$

$$E(T_{r}) = r E(w_{1}) = \overbrace{P}^{r}$$

$$Va_{r}(T_{r}) = r Va_{r}(w_{1}) = \overbrace{P}^{r} \frac{q}{2}$$

Stat 134

1. The population of a small town is 1000 with 50% democrats. We wish to know what is a more accurate assessment of the % of democrats in the town, to randomly sample with or without replacement? The sample size is 10.

a with replacement

b without replacement

c same accuracy with or without replacement

 \mathbf{d} not enough info to answer the question

N large enough that sampling with or without replacement has minimal effect. Also, p close to 1/2

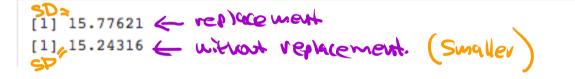
Correction factor is (1000-10)/(999) = 0.99

The variance of hypergeometric is smaller than the variance of binomial. Therefore, sampling without replacement will give more accurate results.

0

R simulation for SD of # democrats in Sample

Code C Start Over Q Solution 1 pop <- 1000 2 sample_size <- 10</pre> reclacement replacement $3 a \ll rep(0, each=pop/2)$ 4 b <- rep(1, each=pop/2)5 box <- c(a,b)6 for(boolean in c(TRUE, FALSE)){ fun <- function(){</pre> 7 my_sample <- sample(box,size=sample_size,replace=boolean)</pre> 8 9 mean(my_sample)*100 3 10 B <- 10000 11 vec_percentages <- replicate(B,fun())</pre> 12 13 print(sd(vec_percentages)) 14 }



Today

1) <u>Sec 3.5</u> Poilson distribution (1) Poilson rundom scatter (PRS) AKA Polsson Princy

(1) Sec 3.5 Poisson distribution (Pois (M))

$$X \cup Rob(M)$$

 $P(X=k) = E^{n} x^{k} \xrightarrow{k=9}{5}$.
 $The the theory, we know $E(X) = M$ and $Vor(X) = M$
 $Since_{j}$
 $Bin(n,p) \rightarrow Pois(M)$ when $P \rightarrow O$
 $np \rightarrow M$.
 $P^{n} = M^{n} \xrightarrow{k=9}{5} N^{n}$.
 $P^{n} = N^{n} \xrightarrow{k=9}{5} N^{n}$.
 $P$$

(2) Poisson Rendom Scatter (PRS)

A random Scatter of polists in a time line is an example of a Poisson random Scatter,

Er X = nonbor at calls coming into a hotel reservation conter in 600 seconds Choose an interval of time so no time interval gets more than one call (Er seconds). trial every 600 sec b me distribution of calls should look random not

Clustered since he have independent trials up sump P

PRS assumptions

let X = # calls in it seconds
time it in that
Then X ~ Pob (M) & Anit of Bin (MP) as non
Say on average there are
$$M = 5$$
 calls in 600 seconds
Let 170 be the rate (or intensity)
of calls per second
 $x = 5$ calls/sec in above example.
Since λ is the same every time interval
(PRS assumptions) $M = \lambda t$.
 λ has units calls/sec

$$E = M = \lambda t = 5$$
, $100 = 5$ calls in 600 sec,
600

t:nyurl.com/febr22-2023

Stat 134

- 1. Which of the following can be modeled as a Poisson Random Scatter with intensity $\lambda > 0$?
 - **a** The number of blueberries in a 3 cubic inch blueberry muffin
 - X The number of patients entering a doctor's office in a 24 hour period.
 - \gtrsim The number of times a day a person feels hungry
 - A The number of air pulses counted every second from cars driving over an empty rubber hose lying across a highway between noon and 1pm.

1

 \gtrsim more than one of the above

Appendix Let X~ Pois (m) Then E(x) = m and Nar(x) = M P1/ Recall $e^{m} = 1 + m + \frac{m^{2}}{2!} + \cdots = \sum_{k=1}^{\infty} \frac{m^{k}}{k!}$ Taylor Serios $E(x) = \sum_{k=0}^{\infty} k \cdot P(x-k) = \sum_{k=0}^{\infty} k e^{-k} \frac{k}{k}$ $= \sum_{k=1}^{\infty} K e^{\lambda} \frac{K^{-1} M}{(K-1)! K} \quad (\text{note } O \cdot e^{\lambda} \frac{O}{M} = 0)$ = me 20 10-1) $= M \underbrace{=}^{\mathcal{A}} \left(1 + M + \frac{M}{2!} + \cdots \right) = \begin{bmatrix} M \\ M \end{bmatrix}$

next we show var(x)=11:

$$V_{ev}(x) = E(x^{2}) - E(x)^{2}$$

= $E(x^{2}) - E(x) + E(x) - E(x)^{2}$
= $E(x(x-1)) + E(x) - E(x)^{2}$

$$E(\mathbf{x}(\mathbf{x}-\mathbf{i})) = \sum_{k=0}^{\infty} K(k-\mathbf{i}) P(\mathbf{x}=\mathbf{k})$$

$$= \overline{e^{\mathbf{x}}} \sum_{k=0}^{\infty} \frac{\mathbf{x}}{\mathbf{x}} \sum_{k=0}^{\infty} \frac{\mathbf{x}}{\mathbf{x}}$$

$$= \overline{e^{\mathbf{x}}} \sum_{k=0}^{\infty} \frac{\mathbf{x}}{\mathbf{x}} \sum_{k=0}^{\infty} \frac{\mathbf{x}}{\mathbf{x}} \sum_{k=0}^{\infty} \frac{\mathbf{x}}{\mathbf{x}}$$

$$= \overline{e^{\mathbf{x}}} \sum_{k=0}^{\infty} \frac{\mathbf{x}}{\mathbf{x}} \sum_{k=0}^{\infty} \frac{\mathbf{x}}{\mathbf{x}} \sum_{k=0}^{\infty} \frac{\mathbf{x}}{\mathbf{x}}$$

$$\Rightarrow \operatorname{Nar}(\mathbf{x}) = \mathbf{x}^{2} + \mathbf{x} - \mathbf{x}^{2} = \mathbf{x}$$

Awardax

Minimum of independent geometrics

Adam, Beth and John independently flipa Pi, Pz, Pz coin respectively, let X = #-trials until Adam, Beth or John get a heads. $X_1 \sim (P_1)$ **B** TTT $X_2 \sim \text{Geom}(P_2)$ J TTH Xz ~ been (Pz) X = 3 a) what is probability Adam, seth or John (Duse inclusion-exclusion (handon) get a head? P(A or B or J got heald) = P1+P2+P2-P1P2-P1P3-P2P3 $+ G_{1} b_{2} b_{1}$ $= 1 - (1 - f_1)(hg)(hg)$ = 1- 9,9292 Zuse complement = I - P (A, B, J down get hours) =[1-9,2,2]

b) what distribution is X? $X \sim Geom(1-2ilis)$ Note that $X \equiv min(x_1, x_2, x_3)$,

Compare this problem with the