Stat 134 lec 16

Warmup

A tob of bluebeng muffler baller has } = 2 pp/12 Intensity of pp.

> bb mullin 1 by 3 m3 bb muffler 7 by 4 ln3

a) on average how many by is in muttin 1? M, = 2.3 = 6 by

b) Find P (5 lb in each notifin)

X, ~ Poly (6) P(X=5 X=5) = 5 X2~ Poly (8) = 666 & 8 C) Flud P(10 bb total by both, mothers to gether)

X,+X7~P64(14) P|X1+X5=10) = [-14 10]

Announcements

For Monday's review write down questions in discussion board on b-course by Sunday 8pm.

Lust thre

sec 3.5 Poisson distribution

 $X \sim Poi> (n)$ $P(X=k) = \frac{e^{n}}{k!}$ E(x) = Ve(x) = m

Poisson Proces or Poisson Randon Scatter (PRS); ex radioactive decay of Americium zu in 10 seconds

O Z 3 10 SEC

Assumptions

O no two particles arrive at the same time, (this allows us to divide 10 sec into n small thre intervals each with at most one arrival.

2) X is a sum of notage fid Bernoul! (p) trials. M=NP is any # of anivals in 10 sec. \[= M/10 \] is the anival rate Per second,

X = # antials in 10 seconds.Suppose X = Y antials/secthen $M = X \cdot 10 = Y0 \implies X \cdot Rd (40)$ Americian has a long half life. Y = # antials in 12070 sec $Y \cdot Rob (X \cdot 12070)$

Tolly () Finish section 3.5 Poisson Thinning

@ mldtam review

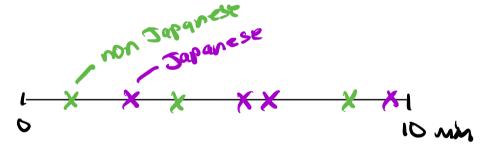
Sec 3.5 Poisson thinning

Cax anive at 9 to 11 booth according to a Poisson process at 9 meter $\lambda = 3$ enrivols/min X = # cars ariving at 9 to 11 booth

in 10 min. $\times \sim \text{Pois}(1.10)$

LXXXXXXXI

Of cars arriving, it is known, over the long term, that 60% are Japanese imports.



cal Japanere cors a success and non Japanere a failure.

The arrival of Japanese cars is is a a "thinned" Poisson Process of the arrival of all types of cars.

cars
$$\sim$$
 Pois (λ -10) = Pois (30)

Terenese imports \sim Pois ($P\lambda$ -10) = Pois (18)

non Jerenese \sim Pois (2λ -10) = Pois (12)

given 10 min interval, 15 cars arrive at the booth and 10 are Japanese importer?

2) Midterm verleu

which distributions are (approximately) a sum of a

fixed number of independent Bernoull triball? **Discrete**

name	P(k) = P(X = k)		
and range	for $k \in \text{range}$	mean	variance
on $\{a, a+1, \dots, b\}$	$\frac{1}{b-a+1}$	<u>a+b</u> <u>n+1</u>	$\frac{(b-a+1)^2-1}{12}$
Bernoulli (p) on {0,1}	P(1) = p; P(0) = 1 - p	p	p(1-p)
binomial (n, p) on $\{0, 1, \dots, n\}$	$\binom{n}{k}p^k(1-p)^{n-k}$	np	np(1-p)
Poisson (μ) on $\{0, 1, 2, \ldots\}$	$\frac{e^{-\mu}\mu^k}{k!}$ where	nder	1 indicato>>
hypergeometric (n, N, G) on $\{0, \dots, n\}$ X = I	$\frac{\binom{k}{k}\binom{n-k}{n-k}}{\binom{N}{k}}$	$rac{nG}{N}$	$n\left(\frac{G}{N}\right)\left(\frac{N-G}{N}\right)\left(\frac{N-n}{N-1}\right)$
geometric (p) on $\{1, 2, 3 \dots\}$	$+2$ $\begin{cases} 0 & \text{cu} \\ (1-p)^{k-1}p \end{cases}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
geometric (p) on $\{0, 1, 2 \dots\}$	$(1-p)^k p$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
negative binomial (r, p) on $\{0, 1, 2, \ldots\}$	$\binom{k+r-1}{r-1}p^r(1-p)^k$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$
NOCM 41	φ(×)	M	a s

CLT =) normal is a sum of iid Bernoulli (0) to lake,

Inclusion exclusion formula:

Let
$$A_1, A_2, A_3$$
 be dependent RVs when

$$P(A_1) = Q \quad \text{for } i = 1, 7, 3.$$

Find a lower bound for $P(\bigcap_{i=1}^{n} A_i^i)$

$$P(\bigcap_{i=1}^{n} P_i) = I - P(\bigcup_{i=1}^{n} A_i^c) \quad \text{Pr. Morganic}$$

$$P(\bigcup_{i=1}^{n} A_i^c) = P(A_3^c) + P(A_2^c) + P(A_3^c)$$

$$-P(A_1^c A_1^c) - - - - - + P(A_1^c A_2^c) + P(A_2^c)$$

$$= P(A_1^c) + P(A_2^c) + P(A_2^c)$$

exhectation drestion

An urn contains 90 marbles, of which there are 20 greens, 20 blacks and 50 red marbles. Tom draw marble without replacement until the 6^{th} green marble. Let X = # of marbles drawn. Example: **GGG**BRB**GG**BR**G** with x = 11. Find $\mathbb{E}[X]$.

Hint First And the expected number of marbles until the 1st green morble. what is the min and max of X? X=# Marbles until first green, _ 1-71
X=T 1 1 1 1 $X = I_1 + \cdots + I_{70} + 1$ $X = I_1 + \cdots + I_{70$ (- 62 - 63 - 620 -

ex Conditional distribution, Poisson

8. Let X_1 and X_2 be independent random variables such that for i = 1, 2, the distribution of X_i is Poisson (μ_i) . Let m be a fixed positive integer. Find the distribution of X_1 given that $X_1 + X_2 = m$. Recognize this distribution as one of the famous ones, and provide its name and parameters.