Warm up? Lel X ~ Ber (P), X = { 0 when prob P a) Find E(x) = 1.P. 0(1-1)- P E(x2)= 1.9+ 0(1-1)=P E(X*) think of e as a fourthow g(X) b) Find $E(e^{\pm X})$, telk $E(g(X)) = g(I)P + g(0) \cdot (-1)$ $e^{t} P + e^{t} (1-p) = e^{t} P + 1-P$ $= Pe^{t} + 1-P = (1+P(e^{t}))$ $\frac{d}{dt}E(e^{t}x) = \frac{d}{dt}(1+P(e^{t}-1)) = Pe^{t} = Pt^{t}$ $\frac{d^2}{dt^2} E(e^{tX}) = \frac{d}{dt} P e^{t} = P$ 4:0 d^k E(e^{tx}) = P To find the moments of X we take the derivations of E(e^{tx}) and evaluate at to For X a RV, M(t) = E(e) is called the money generating function (MGF) of X

Moment Generating Fundion ct X
Not in book. (releasure tingurl.com/statistingf)
Next time Finish MGF, Sec 4.4, stat Sec 4.5
Moment Generating Function (WGF) dx
The
$$\frac{K^{44}}{E(x^{6})}$$
 defined for $K=0,17,3...$
 $E(x^{6}) = E(1) = 1$ moments describe
 $E(x^{6}) = E(1) = 1$ moments describe
 $E(x^{7}) = E(1) = 1$ moments based to variance
 $E(x^{7}) = E(x^{2}) - E(x^{7})$ moments based to variance
 $E(x^{7}) = E(x^{2}) - E(x^{7})$ defined to variance
 K^{4} moments of a RV X is sometimes
 K^{4} moments of a RV X is the number
 $E(x) = E(x^{2}) - E(x^{7})$ moments based to variance
 K^{4} moments of a RV X is sometimes
 K^{4} moments of a compute the
moments by computing demonstrate X is sometimes
 K^{4} moments by computing demonstrate X is sometimes
 K^{4} allows one to compute the
moments by computing demonstrates X with X

easter,

Recall
$$E(g(x)) = \int g(x) f(x) dx$$

We beddine the MOF of X to be

$$M_{X}(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tX} f(x) dx \quad H \times continuous$$

$$M_{X}(t) = Sometimes \qquad (2e^{tX} P(x) \quad H \times db contex
M_{X}(t) in HW9 \qquad (2e^{tX} P(x) \quad H \times db contex
Withen X to in HW9 \qquad (2e^{tX} P(x) \quad H \times db contex
Withen X to in HW9 \qquad (2e^{tX} P(x) \quad H \times db contex
Withen X to in HW9 \qquad (2e^{tX} P(x) \quad H \times db contex
Withen X to in HW9 \qquad (2e^{tX} P(x) \quad H \times db contex
Withen X to in HW9 \qquad (2e^{tX} P(x) \quad H \times db contex
Withen X to in HW9 \qquad (2e^{tX} P(x) \quad H \times db contex
Withen X to in HW9 \qquad (2e^{tX} P(x) \quad H \times db contex
Withen X to in HW9 \qquad (2e^{tX} P(x) \quad H \times db contex
Withen X to in HW9 \qquad (2e^{tX} P(x) \quad H \times db contex
Withen X to in HW9 \qquad (2e^{tX} P(x) \quad H \times db contex
W1 = Context of the context of the X & db contex
W1 = Context of the context$$

Recall the Taylor series for
$$e^{x}$$
:
 $e^{x} = 1 + y + y^{2} + y^{3} + \cdots$
 $z_{1} + z_{2} + z_{3} + \cdots$
let ter, X RV.
You can do this for the RV + X
 $e^{\pm X} = 1 + e^{\pm X} + (e^{\pm X})^{2} + z_{1}^{2}$

$$E(e^{\pm X}) = E(i) + E(\pm X) + E((\pm X)^{2}) + \cdots$$

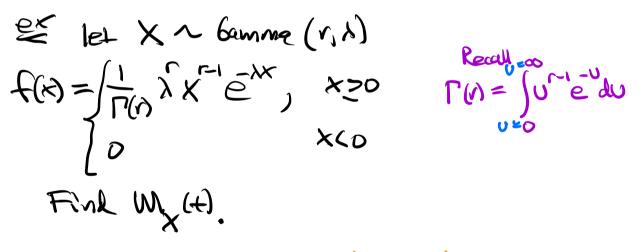
$$M_{X}(H) = E(i) + \pm E(X) + \pm \frac{1}{2!}E(X^{2}) + \cdots$$

$$\frac{d}{dt} \begin{bmatrix} M_{x}(t) \end{bmatrix} = E(x) \\ t=0 \\ \frac{d}{dt^{2}} \begin{bmatrix} M_{x}(t) \end{bmatrix} = E(x^{2}) \\ t=0 \\ More \\ generally \\ \frac{d}{dt^{k}} \begin{bmatrix} M_{x}(t) \end{bmatrix} = \frac{d}{dt^{k}} E(e^{t}) \\ \frac{d}{dt^{k}} \begin{bmatrix} M_{x}(t) \end{bmatrix} = \frac{d}{dt^{k}} E(e^{t}) \\ t=0 \\ Lets not up, this show is = E(a^{k} e^{t} x) \\ true. See Lethent = ne. \\ = E(x^{k})$$

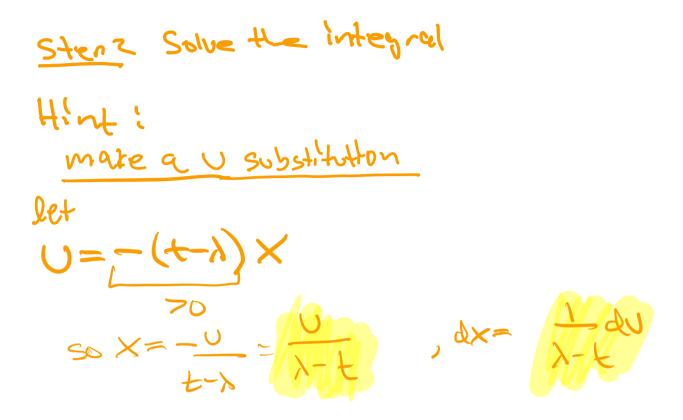
The MGF exists in an open interval
around zero,
$$M^{(k)}(t) = E(x^{k})$$

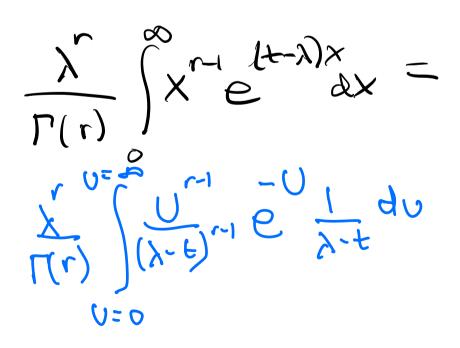
 $t=0$

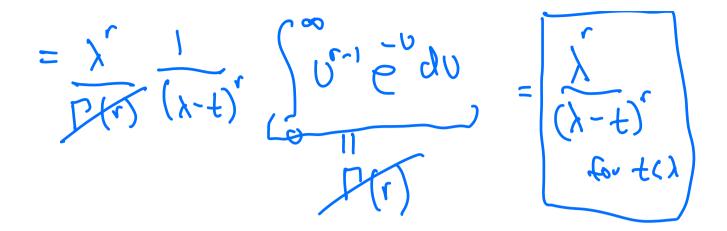
Note An MGF Doeunt always exist its an ope interval avour & Zero. (See appendit for an example)



Sterl write $M_{\chi}(t)$ as an integral $M_{\chi}(t) = E(e^{t\chi}) = \int e^{t\chi} (\frac{\lambda}{\Gamma(r)} \chi e^{\lambda t}) dx$ $\int e^{\chi} (t) \chi e^{t\chi} dx$ for $t < \lambda$ $\int \Gamma(r) \int \chi e^{\chi} dx$ for $t < \lambda$







Recall If a MGF exists in an interval around zero, $M(t) = E(X^t)$

tingurl.con/mar13-2023

Stat 134 Monday October 10 2022

1. Let $X \sim \text{Gamma}(r, \lambda)$. Using the MGF $M_X(t) = (\frac{\lambda}{\lambda - t})^r$ for $t < \lambda$ we calculate the second moment of X is: **a** $E(X^2) = \frac{r(r+1)}{\lambda}$ **b** $E(X^2) = \frac{r(r-1)}{\sqrt{2}}$ $M_{\chi}(o) = \frac{1}{\lambda}$ $\mathbf{C} E(X^2) = \frac{r(r+1)}{\lambda^2}$ \mathbf{d} none of the above $M_{\chi}(t) = \lambda (\lambda - t)^{-r}$ $M_{\chi}(t) = \chi(-r)(\chi-t)(-1) = \chi r(\chi-t)$ $M_{\chi}^{\prime}(t) = r \lambda (-r-i) (\lambda - t) (-i)$ = r (r+1) / (1+r) 1 = $W_{i}^{\chi}(o) = \iota(\iota+i)\chi\frac{\gamma_{\iota+5}}{1} = \frac{\gamma_{i}}{\iota(\iota+1)}$ Note ver (x) = E(x) - E(x) $= \frac{r(r+1)}{\sqrt{2}} - \frac{r^2}{\sqrt{2}}$

= A RV X totas 1,2,3 utthe poole te, 15, 16. Find $M_X(H)$, $z \in X$ $E(e^{\pm X}) = \sum_{k=1}^{k} e^{k}P(x)$ $= e^{\frac{x=1}{2}} + e^{\frac{x}{2}} + e^{\frac{x+1}{6}}$ f. all t

$$E^{*} \times \sqrt{6e0} \times (\frac{1}{3})$$

$$P(X=x) = (\frac{3}{3})^{X-1} (\frac{1}{3}) \times =1,2,3, \dots$$
Find $M_{X}(4) = E(e^{4X})$

$$= \sum_{k=1}^{\infty} e^{4K} (\frac{e_{k}}{3})^{K-1} (\frac{1}{3})$$

$$= \sum_{k=1}^{\infty} e^{4K} (\frac{e_{k}}{3})^{K-1} (\frac{1}{3}) = 1 + e^{\frac{1}{3}} + (e^{\frac{1}{3}})^{2} + \dots + e^{\frac{1}{3}} + \dots + e^{\frac{1}{3}} + (e^{\frac{1}{3}})^{2} + \dots + e^{\frac{1}{3}} + \dots +$$

Apparentix:
Let X be a discrete PV with probability mass
Eunchoon
$$P(X) = \int_{T=XZ}^{G} x=1, 2, ...
Co else
The M6F, M_XAJ only exists at t60 and have boownth
existion an interval around zero,
Pt/
The is known that the services
 $\frac{1}{12} \pm \frac{1}{22} \pm \frac{1}{52} \pm ...$ Converges to T_{G}^{2} ,
Then $P(X) = \left(\frac{G}{T^{2}X^{2}} \quad K = 1, 2, 3, ...\right)$
(O else,
is the Pred function of a RV X,
 $M_{X}(t) = E(e^{tX}) = \sum_{K=1}^{\infty} e^{tX}$
 $T_{K} = routo tool can be used to show this
diverges $X \pm 20$. Hence this RV only has
an M6F at t60 and is not differentiate
of zero.$$$