Stat 134: Section 15 Adam Lucas April 4th, 2023

Conceptual Review

- a. Let *X*, *Y* have joint density $f_{X,Y}$. Draw a picture showing what we mean by $P(X \in dx, Y \in dy)$. How do we calculate $P((X, Y) \in A)$ or $\mathbb{E}[g(X, Y)]$?
- b. How do we find marginal density of *X*, *Y* with joint density $f_{X,Y}$, what happens when *X* and *Y* are independent?
- c. If *X*, *Y* are jointly uniformly distributed over a region, what does their joint density look like?

Problem 1

A metal rod is ℓ inches long. Measurements made using this rod are distributed uniformly from $\ell - 0.1$ to $\ell + 0.1$ inches, accounting for random error. Assume measurements are independent of each other.

- a. Find the chance that a measurement is within 0.01 inches of ℓ .
- b. Find the chance that two measurements are within 0.01 inches of each other.

Draw a picture to help visualize this event.

Ex 5.1.2 in Pitman's Probability

Problem 2

Suppose that (X, Y) is uniformly distributed over the region $\{(x, y) : 0 < |y| < x < 1\}$. Find:

- a. The joint density of (X, Y)
- b. The marginal densities $f_X(x)$ and $f_Y(y)$
- c. Are *X* and *Y* independent?
- d. Find $\mathbb{E}[(X+Y)^2]$.

As before, draw a picture of the region. This will help you to set bounds for integration, and may provide a hint for part (d).

Problem 3

Minimum and maximum of two independent exponentials. Suppose *S* and *T* are i.i.d. Exponential (λ) random variables. Define $X = \min\{S, T\}, Y = \max\{S, T\}$, and Z = Y - X.

- a. Find the joint density of *X* and *Y*. Are *X*, *Y* independent?
- b. Find the joint density of *X* and *Z*. Are *X*, *Z* independent?
- c. Find $\mathbb{E}(XY)$.

Consider $P(X \in dx, Y \in dy)$. What are the possible ways this could happen?