STAT 134: Section 4

Adam Lucas

January 31, 2022

Note: You may leave your answers in terms of Φ or Φ^{-1} as necessary, where $\Phi(x)=\int_{-\infty}^x \frac{1}{\sqrt{2\pi}}e^{-z^2/2}dz$, and Φ^{-1} is the inverse of Φ .

Conceptual Review

- 1. Suppose *X* has a Binomial(n, p) distribution. What is the Normal approximation to the probability $P(a \le X \le b)$?
- 2. "Why is Normal approximation useful?" Consider what might be difficult about calculating $P(a \le X \le b)$ exactly, when n is large and p is small.
- 3. "Why do we use the continuity correction?" Consider, for example, what goes awry with the Normal approximation to $P(a \le X \le b)$ if a = b and we do not use the continuity correction.

Problem 1

Let H be the number of heads in 400 tosses of a fair coin. Find normal approximations to

- a. $P(190 \le H \le 210)$
- b. $P(H \le 220)$
- c. P(H = 205)

Ex 2.2.1 in Pitman's Probability

Problem 2

An airline knows that over the long run, 90% of passengers who reserve flights show up for their flight. On a particular flight with 300 seats, the airline accepts 324 reservations.

- a. Assuming passengers show up independently of each other, what is the chance the flight will be overbooked?
- b. Suppose people always travel in pairs. Will that increase or decrease the chance above?

Ex 2.2.9 in Pitman's Probability